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End effects in inviscid flow in a magnetohydrodynamic 
channel 

By G. W. SUTTON AND A. W. CARLSON* 
Space Sciences Laboratory, General Electric Company, Philedelphia 

(Received 16 January 1961) 

The flow of an inviscid, incompressible electrical conducting fluid in a channel 
of constant rectangular cross-section is considered, when the flow enters a region 
which contains a magnetic field transverse to the flow and electrodes on opposite 
sides of the channel. This geometry is typical of a d.c. induction pump or magneto- 
hydrodynamic generator. The conducting fluid external to the magnetic field 
acts as a shunt and produces a non-uniform electric potential field and hence 
a non-uniform Lorenz force on the fluid, and causes the fluid velocity profile to 
be distorted. These effects are calculated theoretically for small magnetic Rey- 
nolds number and small magnetic interaction parameter. It is found that the 
velocity at the centre-line of the channel is retarded and at the walls the velocity 
is accelerated. The fractional change of velocity at the wall is equal to approxi- 
mately 0.44 times a modified magnetic interaction parameter. 

1. Introduction 
In a magnetohydrodynamic electrical power generator, an electrically con- 

ducting fluid flows through a channel, in which a transverse magnetic field is 
applied. The magnetic field interactcts with the fluid flow to induce an e.m.f. in 
the direction perpendicular to the magnetic field and to the direction of the fluid 
flow. Electrodes are inserted into the channel walls parallel to the magnetic 
field. If the electrodes are connected to an external load, electrical power can be 
extracted from the magnetohydrodynamic generator, since the induced e.m.f. 
produces a voltage difference between the electrodes (figure 1). Alternatively, 
if the electrodes are connecbd to a current supply, the channel will act as an 
induction pump. 

The electric current in the fluid is composed of two parts: one due to the in- 
duced e.m.f., and the other due to the electric field caused by the voltage difference 
between the two electrodes. The latter current flows from the positive to the nega- 
tive electrode and o p p o ~ ~  the current caused by the induced e.m.f. (figure 2). 
At the entrance and exit regions of the channel, that is, near the ends of the elec- 
trodes, electric field is not uniform, causing the current density to vary in magni- 
tude and direction in the entrance and exit regions. 

The Lorentz force due to the induced e.m.f. opposes the flow and is constant, 
but the Lorentz force due to the voltage differences between the electrodes 
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variea in magnitude and direction in the entrance and exit regions. The variation 
of the Lorentz force cauw the velocity profle of the fluid to change in the en- 
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FIGURE 1. Schematic diagram of a magnetohydrodynamic channel. 

Magnetic field 
1 b  0 

1 b.7 4 
emf.. 



Inviscid $ow in a magnetohydrodynamic chnnel 123 

In  order to obtain a solution to the problem, several simplifying assumptions 
and idealized boundary conditions have been used. The fluid dynamic assump- 
tions are aa follows: (1) The flow is steady. (2) The density of the fluid is constant. 
(3) The viscosity is negligible. (4) The flow is two-dimensional; that is, all 
gradients in the direction of the magnetic field are zero. ( 6 )  The velocity perturba- 
tions are small, hence the flow equations may be linearized. 

The magnetohydrodynamic assumptions are as follows: (1) The electrical 
conductivity of the fluid is constant. (2) The Hall effects are negligible. (3) The 
magnetic Reynolds number is assumed very small so that the applied magnetic 
field is not altered by the presence of electric currents in the fluid. (4) The mag- 
netic interaction parameter is assumed to be small. 

The idealized boundary conditions are as follows: (1) The channel walls, 
including the electrodes, are parallel. (2) The electrodes are infinitely long, 
0 < x < 00. (3) The voltage of each electrode is constant, f $w. (4) The wads, 
except for the electrodes, are perfect electrical insulators. (6) The magnetic 
field is zero upstream from the electrodes and has a constant value between the 
electrodes. It is directed perpendicular to the diagram in figure 2. (6) The 
velocity far upstream from the electrodes ia constant across the channel. 

2. Equations 

velocities can be written aa 
Since the velocity perturbations are assumed small, the axial and transverse 

u = U+U', v = v', (1) 

where u' and v' are small compared to U. Thus, the fluid dynamic equations may 
be linearized aa follows, the continuity equation becoming 

(adlax) + (av'py) = 0, (2) 

and the momentum equations becoming 

and 

(3) 

(4) 

Differentiation of equation (3) with respect to y and equation (4) with respect 
to x and subtraction of the resulting equations gives 

P U ( ~ S / W  = - li,(aB/ay) +B(aj,/ay) +j,(aBlW + B(a j ,Wl ,  

6 = (adlax) - (au'px). 

(5) 

where the vorticity 6 is given by 

(6) 

The first term on the right of equation (5) is zero. From the continuity equation 
of electricity, the second and fourth terms on the right are also zero. Thus 
equation ( 6 )  becomes 

pU(a[/;lax) = - j,(aB/as). (7) 

The magnetic field, B, is zero or constant everywhere except at x = 0. Therefore, 
for x < 0, the vorticity is a function of y alone and for x > 0, it is another function 
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of y alone. Since the flow is initially irrotational, i t  remains irrotational up to 
x = 0. At x = 0, there is a vorticity jump which is given by 

PUAC = - ( L ~ , = o W  (8) 

where (j,)-,, is a function of y only. Thus 

and 

g = 0  for x < 0, 

5 = - (B/pU) (jz)z=o for x > 0. 
(9) 

If the longitudinal component of the electric current density at x = 0 is known, 
the vorticity can be found anywhere in the channel. The vorticity may be ex- 
pressed in terms of the stream function by 

ut = a$/ay, v1 = -a+/ax. (10) 

The vorticity is then given by 

y = - (a2$/ax2) - (a2$/ay2) = - v2+, 

so that equation (9) becomes 

(11) 
(x < O);) 

V2$ = 0 

V V  = ( ~ / P ~ ) ( L ) z = o  (x ’ 0). 
Equation (11) is the required fluid dynamical equation. The electric field 

equation is obtained from conservation of electricity. Neglecting the Hall effect, 
the generalized Ohm’s law is taken as 

j = a(E+qxB) .  (12) 

Since the problem is steady, V x E = 0, and therefore E may be considered to be 
the negative gradient of electric potential 

E =  -V$. (13) 

V2$ = B.(Vxq)-q . (VxB) .  (14) 

vz$ = Bg-v(aB/ax). (15) 

The divergence of the electric current is zero; for constant cr equation (12) then 
becomes 

Since V x q = gk, B = Bk, equation (14) becomes 

For x 
equation (15) becomes 

0, (aB/ax) = 0, and the vorticity is obtained from equation (9), so that 

(x O ) ; I  

V24 = 0 

V24 = - ~ W P ~ ) ( j , ) Z - o  (5 > 0). 

The electric current is obtained from equation (12) as 

j, = v (E ,  + vB) 

j, = - C[(a+/ax) + ~ ( a $ / a ~ ) l .  or 
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Thus equations (1 1) and (16) become 

v2+ = V2$ = 0 (5 < 0); ( 1 9 4  

The boundary conditions are 

9 = f 9w, y = T 4.. (5 > 0); ( 2 0 4  

a9PY = 0, y = *in (x < 0); (20b) 

$ =  f U i n ,  y =  &in ( - c o < x < 0 0 ) .  ( 2 0 4  

$ = UhY, + = UBh@, x = h& y = h e ,  (21) 

Equations (19) may be made dimensionless by use of the following new variables 

where h is the channel width. 
With the use of equations (21), equations (19 b) and (19c) become 

and 

where I is the magnetic interaction parameter, uBzh/pU. To solve equations 
(22a) and (22b) for small I, @ and Y are expressed in terms of series whose 

(23 a )  
coefficients are powers of I 

(23 b )  

These are then substituted into equations (22a) and (22 b), and the terms having 
common powers of I are equated, to give 

@ = @,,+I@,+ ..., 
Y = Ypo+m1+ .... 

The boundary conditions then become, in terms of the dimensional variables, 
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3. Solution to the electric potential equations 
It is convenient to make the transformation 

17 = Y + h  (26) 

to shift the origin of the co-ordinate system to the lower wall, see figure 2. To 
solve equation (24a) with the boundary conditions of equations (25a, b), the 
original region is mapped conformally by means of the following transform 

em = sin z’, (27) 
(see figure 3), 
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FIGURE 3. Complex plenea showing the regiona mapped. 

where z = x + i v ,  2’ = x’ + i f .  In  the 2’-plane, the boundary conditions are 

q50 = f (bW, 2’ = * *7r; a$o/a17‘ = 0 (7)’ = 0). (28) 

40 = 2q5wx’/n. (29) 
The solution is obviously 

Thus, in the 2‘-plane lines of constant 7)’ are flux lines, while lines of constant x’ are 
equipotential lines. These are shown in figure 4. 

The electric current to the electrodes between x = 0 and z may be calculated 
next from 

or J, = 2n-l~q5W 7’ - uUBX. ( 30) 

7)’ = x+ln2, (31) 

(32) 

For large 7’ along 2’ = in, the transformation of equation (27) becomes ez = $ef, 
so that 

and when substituted into equation (30) this yields 

Jo = U( 271-lq5w - UB) x + 27r-’~q5w In 2. 
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Thus, there is a current loss of 2n-lu+,ln2 associated with the inlet, and a 
eimilm loss at the exit. If the channel length is L, the total current to the elec- 
trodes, per unit height in the direction of the magnetic field, is 

JL = ~ 7 [ ( 2 + ~ / h )  - UB] L + 4 n - l ~ q 5 ~  In 2 ,  (33) 
where h is the channel width and the voltage across the electrodes is 2+w; thus 
the laat term represents the inlet and exit losses. The power consumed or pro- 
duced is P = - 25bW JL, and, in the case of a magnetohydrodynamic generator, 
the external resistance is given by - 2+,/JL. 

Y 

4 Negative electrode 

F m m  4. Electric flux linea (solid) and equipotential lines (daahed) in the upper 
half of the channel. 

The change in total average pressure may be calculated from 
Q) 

Ap = 27r-lj- ,  (j x B),dzdy. (34)  

Substitution for the current from the generalized Ohm's laws and integration 

Ap = ~BL[2&h-l- UB]. (35) 
yield8 

It is interesting to note that there is no term representing the end loss in equation 
(35). 

A pump or generator efficiency, or en, may be defined in terms of the flow 
work (Ap)  Uh and the power P by 

(36) 

Finally, if L -+ 00, the end losses become negligible, and the efficiencies become 

BLUh[2qJwh-l- UB] - Ap Uh ep = el1 = - - P 2&{L[2& h-1- UB] + 4n-'+w In 2 )  ' 

e,, = c;~  = UBh/2+,. (37) 

Thus for efficient operation, the electrode voltage should be close to the induced 
voltage. It should be noted that this analysis applies to finite length electrodes 
with an error of lesa than 1 yo if L/h =- 1. 



128 G. W. S u t h  and A. W. Carlson 

The equation for $o, equation (25 a), has also been solved for constant magnetio 
field extensions by Fishman (1959) and for exponentially decreasing magnetio 
fields by Sutton, Hurwitz & Poribky (1959), for which efficiencies have also been 
calculatd. In  addition, Hurwitz, Kilb & Sutton (1961) have also considered the 
Hall effect. However the influence on the fluid motion was not considered. In 
addition, the electric fields associated with extensions to the magnetic fields 
complicate the calculation of 11.1, but do not materially alter the main effect, 
Therefore, in the remainder, extensions to the magnetic field will not be con- 
sidered. 

The solution to equations (246, d )  for $1 are also not simple to obtain because 
of the inhomogeneous term and the boundary conditions for but this is not 
required in obtaining the solution for $o or 9,. However, the expression for 
a$,/ax is required. In terms of the transformed coordinates, this is given by 

(a$o/ax)zd) = 2n-l$,(ax’/ax)z,o. (38) 

(a$o/ax)z-o = n - ~ $ ~ [ ( l  sin q)/sin q] i .  (39) 

Use of equation (27) to determine (dx’ldx) yields 

4. Solution to the flow equations 
The solution to equation (24b) with boundary conditions (25 e) is 

$0 = UY. (40) 

v2+1 = f ( Y ) ,  (41) 

With equations (40), (39) and (24e), the equation for $, then becomes 

} (42) 
where f(y) = 0 when x < 0 

and f(y) = - (aB$,/npU) [( 1 - cos y)/cos y]) when x > 0. 

Since f (y) is a forcing function, the solution for $, may be obtained by means of 
a Green’s function as 

$1 = JoOD G(x - E, y) dE, (43) 

where V2G,, a@ - 6, Y) = & M y )  (4) 
and 6 is the Dirac delta function. By means of separation of variables, the 
following solution is obtained for G, 

and 

UJ 

G, = x a, sin (2ny) e2Mz-n 
n= 1 

m 

The coefficients a, are the same in equations 

when x < 6, (45 4 

when x > [. (45 b)  

(45a, b) since G, = B, at x = 6. 
Substitution of equations ( 4 5 4  b) in equation (44) and integration from x = 6-e  
to x = E+syields OD 

- 4  x %tsin(2ny) =f(y), (46) 
?a= 1 

80 that (47) 
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Use of equation (42) forf(y) and a change of variable to q by equation (26) yields 

The integral in equation (48) is the imaginary part of 

The integral may be taken in the complex plane from 2 = 1 to 2 = i, where 

Z = e*, d8 = dZ/iZ and sin0 = (Z2- 1)/2iZ. (50) 

Substitution of equation (50) into (49) yields the integral 

f 22"( 1 + iZ) dZ. s 1 Z(1-22)a 

Since there are no singularities in the quadrant concerned, the path of integra- 
tion may be taken from l to 0, then 0 to i. The integral (61) then becomes 

1 ZZ"( 1 + ix) dx+Ji @ ! ! 2 1 $ - *  1-y ) idy  s 0 z[l-9]' 

The only imaginary part is the second term of the first integral. Upon letting 
x2 = 8, it becomes 

1 r(n+ ~. a, W) 
2 r(n+l) 

Thus, the coefficients a,, are given by 

(63) 

Values of a,, are shown in table 1. The stream function is obtained by substitution 
of equation (45) into equation (43) and integration. The result is . 

$l = J G,d( = c %sin (2ny)e2= for x < 0; 
0 n-12n 

The solution is shown graphically by the streamline pattern in figure 5. 

substitution of a,, from equation (53). Hence 
The velocity perturbation is then given by differentiation of equation (54), and 

u&b, O0 ( - l),, 1.3.5 . . . (2n - 1) 
211 = -- 

2 n p U n 5 1 n  2.4.6 ...( 2n) 
sin (2ny) ef2W. 

For x < 0, the upper sign, and for x > 0, the lower sign is to be used. It is obvious 
that the change in axial velocity at x = 0 is one-half of that at x = co. When the 

9 Fluid Meoh. 11 
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fluid leavea the magnetic field, the effects are exactly doubled and the velocity 
change is also doubled. 

It can be seen from the form of the solution that the changes in velocity are 
linearly dependent on a modified magnetic interaction parameter I' = vB&/pV,  
or in terms of I, 

The maximum value of u' occurs at the wall; this is given by u'/U = 0.441' aa 
x --f a. Thus, the linearization of the flow is consistent with the assumption of 
small magnetic interaction parameter. Also, if the two electrodes are at the same 
potential, the u' = v' = 0. The axial velocity perturbation profile for x+ 03 is 
shown in figure 6 and the development is shown in figure 7. 

I' = ($w/BUh)I.  (66) 

2 

Fromclc 7. Axial variation of change in axial velocity along axis of channel. 

5. Asymptotic velocity profile 
In  the region of the channel far downstream from the entrance the velocity can 

be calculated directly, without first finding the solution throughout the entire 
channel. 
As x becomes very large, the vertical component of the velocity becomes very 

small. Therefore, the vorticity is 
[ =  -a  U P Y  (57) 

80 that u = - f b d y .  (58)  

From equation (9), the vorticity is given by 

and integration of the radical with respect to q yields 

2 sinh-1 (sin q)4 + const. 

Since the average velocity must be 27, the constant may be evaluated, from which 
it is found that 

u' = ?!!!!E [In 2 - sinh-' ( C O S ~ ) ~ ] .  
V U  

9-2 
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Thus u'lU = -O-l18cB&,IpU2 at y = 0 (62) 

and u'lU = 0-442cB$,/pU2 at the walls. (63) 

For I' = a, the velocity variation at the wall is about 10 yo of the initial velo- 
city. For larger values of the parameter, the assumption of small velocity per- 
turbations is no longer valid. 

This solution is qualitatively similar to that found by Shercliff (1956) for 
the flow distortion at the inlet to a flowmeter; however, equation (18) predicta 
that the flow disturbance would be about 50% greater than that for the flow- 
meter problem. Also, Shercliff gives only the asymptotic velocity profile and 
not the development of the perturbation, as given by equation (55). 

6. Discussion 
Measurements of the flow distortion have recently been made in copper sul- 

phate solutions by ROSSOW, Jones & Huerta (1961). The mean flow velocity 
was 4*22in./sec, taken at the point where u' = 0 from the theory, which corre- 
sponds to 1-17 in. from the centre-line. The value of u'(0) wm then 0-83in./sec. 
Using a magnetic field of 4000G, equation (62) predicts that u' = l.ISin./sec., 
which is higher by about 28 %. This is good agreement, considering that viscosity 
was neglected, and that the magnetic field does not abruptly decrease to zero at 
2 = 0. 

This work waa supported by the United States Air Force Office of ScientSo 
Research, under contract 49( 638)-914. The authors gratefully mknowledge the 
helpful suggestions of Dr H. Hurwitz, Jr. 
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